ar X iv : m at h / 94 06 22 6 v 1 [ m at h . C A ] 2 9 Ju n 19 94 COMBINATORIAL ORTHOGONAL EXPANSIONS
نویسندگان
چکیده
The linearization coefficients for a set of orthogonal polynomials are given explicitly as a weighted sum of combinatorial objects. Positivity theorems of Askey and Szwarc are corollaries of these expansions.
منابع مشابه
ar X iv : m at h / 06 06 33 9 v 1 [ m at h . SP ] 1 4 Ju n 20 06 Eigenfunction expansions associated with 1 d periodic differential operators of order 2 n
We prove an explicit formula for the spectral expansions in L(R) generated by selfadjoint differential operators (−1) d dx2n + n−1
متن کاملar X iv : h ep - p h / 94 06 43 3 v 1 3 0 Ju n 19 94 UdeM – GPP – TH – 04
I summarize the prospects for discovering Higgs bosons at future pp and e + e − colliders both in the Standard Model and its Minimal Supersymmetric extension.
متن کاملar X iv : m at h / 06 06 67 1 v 1 [ m at h . A C ] 2 7 Ju n 20 06 PRÜFER ⋆ – MULTIPLICATION DOMAINS AND ⋆ – COHERENCE
متن کامل
ar X iv : m at h / 99 06 07 7 v 1 [ m at h . Q A ] 1 1 Ju n 19 99 ON A COMBINATORIAL IDENTITY
and [0] = 1. Observe that this identity is valid in the ring of polynomials in z1, · · · , zm+1 over Z[q, q]. From combinatorial viewpoint the identity (1.1) is equivalent tom+2 identities of linear relations among Hall-Littlewood polynomials [6] associated to certain tuples (not necessary partitions). The first and the last of these linear relations are actually equivalent to the well-known q-...
متن کاملar X iv : m at h / 06 06 43 6 v 1 [ m at h . Q A ] 1 9 Ju n 20 06 NONCOMMUTATIVE POISSON STRUCTURES ON ORBIFOLDS
In this paper, we compute the Gerstenhaber bracket on the Hochschild cohomology of C∞(M)⋊Γ. Using this computation, we classify all the noncommutative Poisson structures on C∞(M) ⋊ Γ when M is a symplectic manifold. We provide examples of deformation quantizations of these noncommutative Poisson structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996